

IBISAR downstream service:

Lagrangian assessment of CMEMS and regional model products supporting emergency decision-making at sea

Emma Reyes, I. Hernández-Carrasco, A. Révelard, B. Mourre, P. Rotllán, E. Comerma, T. Tajalli-Bakhsh, A. Rubio, J. Mader, L. Ferrer, C. de Lera Fernández, E. Álvarez-Fanjul, J. Tintoré

www.socib.es

OUTLINE

01 IBISAR: motivation

02 IBISAR: service overview

O3 IBISAR: accurate data in 3 steps

04 IBISAR: skill assessment methodology

05 IBISAR: skill assessment results

1BISAR: skill assessment functionality

07 Conclusions

IBISAR: MOTIVATION

OCHERNO DE ESMA MINISTERO DE COMERNO DE COME

Copernicus Marine Service products are crucial...

Map showing CMEMS-MFC models overlapping in the IBI region and SAR areas

...to support Marine Safety & Environmental Protection

End-users overarching concern: Impact of inaccurate data on decision-making

Simulated trajectories from different models: drifting motorboat "Pedro II"

SAR operators needs data confidence

IBISAR SERVICE OVERVIEW

How can we improve emergency response at sea?

End-users needs

Reliable current observations and forecasting are essential

Easily interpretable metrics

User-friendly automated skill assessment

02

IBISAR SERVICE OVERVIEW

IBISAR service

Provides real-time information of the most accurate ocean current forecast in the IBI area

Facilitates decision-making to SAR operators and emergency responders

End-users needs

Reliable current observations and forecasting are essential

Easily interpretable metrics

User-friendly automated skill assessment

1.- Simulates trajectories using available forecast models

1.- Simulates trajectories using available forecast models

model 2

2.- Compares s i m u l a t e d trajectories vs. real drifters

03

IBISAR: ACCURATE DATA IN 3 STEPS

1.- Simulates trajectories using available forecast models

model 2

2.- Compares simulated trajectories vs. real drifters

3.- Ranks models based on their performance

Skill Score definition

Trajectory model performance evaluation

Normalized cumulative Lagrangian separation distances

CMEMS IBI MFC simulated vs. **CODE** drifter trajectories

CMEMS IBI-MFC Skill Score (72 hours)

05

IBISAR: SA METHODOLOGY

PREVIOUS STEPS FOR HFR DATASETS

Open-boundary Modal Analysis (OMA) [Kaplan & Lekien, 2007]

- Obtain gap-free 2D surface currents from radials
- Gap-free needed for integrative applications

Gap-free 2D surface currents

Lagrangian trajectories

IBISAR: SA METHODOLOGY PREVIOUS STEPS FOR HFR DATASETS

Data filled in the domain

Velocity OMA (Open-boundary Modal Analysis) nowcast

Velocity modes

- Describe all possible patterns
- Only depend on the geometry
- Can be computed once
- Can be stored for real-time applications

05 IBISAR: SA RESULTS - GIBST

MEDESS-GIB deployment plan: Sep-Oct 2014

- 35 drifters buoys: mostly CODE type
- Ocean models:
 - 3 CMEMS models: IBI, GLOBAL 1/4, MED
- Altimetry

Spatial distribution of Skill Scores in GIBST (IBI sub-region)

IBISAR: SA RESULTS - WSMED

Sep-Dec 2014

- 13 drifter buoys: 4 CODE, 5 Iridum MDO3i, 4 ODI
- Ocean models:
 - 3 CMEMS models (IBI, MED, GLOBAL)
 - 1 regional WMOP
- Altimetry and HFR

Spatial distribution of Skill Scores in WSMED (IBI sub-region)

IBISAR: SA RESULTS - WSMED 06

Jul-Sep 2016

- 4 drifter buoys: CODE
- Ocean models:
 - 3 CMEMS models
 - 1 regional WMOP
- HFR

40°N

40°N

39⁰N

40°N

06

IBISAR: SA RESULTS - WSMED

Oct-Dec 2018

- 5 drifter buoys: CARTHE (eco-friendly)
- Ocean models:
 - 3 CMEMS models
 - 1 regional WMOP
- HFR

Spatial distribution of Skill Scores in WSMED (IBI sub-regi

04

IBISAR: SKILL ASSESSMENT FUNCTIONALITY

Puertos del Estado

Intermediate-user requests

- added-value HFR gap-filled products needed
- * satellite-tracked drifters data ingestion should be promoted

SA results in GIBST – Strait of Gibraltar

- * altimetry follows major geostrophic circulation features
- * lower models performance, particularly in the EAG
- * IBI yields the highest skill scores (tidal forcing included)

SA results in WSMED – Western Mediterranean

- * downscaling needed to reproduce the intense mesoscale activity
- dynamically different flow regimes should be considered to evaluate model performance
- * HFR offers the highest performance in most scenarios

IBISAR complements the decision-support tools

- * User-friendly service
- Improve SAR and pollution control operations

ACKNOWLEDGEMENTS

Spanish Port System

Spanish Maritime Safety and Rescue Agency

Operational Oceanography System of the Basque Country

COSMO Project (CSIC-ICM)

INCREASE (Copernicus Marine Service – Service Evolution)

IBISAR (Copernicus Marine Service – User Uptake)

Copernicus Marine Service – INSTAC –phase2

THANKS FOR YOUR ATTENTION

Visit www.ibisar.es

Effective response needs the most accurate data

